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CHAPTER

TWO
MICROWAVE SPECTROSCOPY

2.1 THE ROTATION OF MOLECULES

We saw in the previous chapter that spectroscopy in the microwave region
is concerned with the study of rotating molecules. The rotation of a three-
dimensional body may be quite complex and it is convenient to resolve it
into rotational components about three mutually perpendicular directions
through the centre of gravity—the principal axes of rotation. Thus a body
has three principal moments of inertia, one about each axis, usually desig-
nated I 4, I,, and I..

Molecules may be classified into groups according to the relative values
of their three principal moments of inertia—which, it will be seen, is tanta-
mount to classifying them according to their shapes. We shall describe this
classification here before discussing the details of the rotational spectra
arising from each group. :

L. Linear molecules. These, as the name implies, are molecules in which all
the atoms are arranged in a straight line, such as hydrogen chloride HCI,
or carbon oxysulphide OCS, illustrated below. The three directions of
rotation may be taken as (a) about the bond axis, (b) end-over-end

H—<Cl
O—C—s

rotation in the plane of the paper, and (c) end-over-end rotation at right
angles to the plane. It is self-evident that the moments of (b) and (c) are
the same (ie, Iy = Ic) while that of (a) is very small. As an approx-
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imation we may say that I, = 0, although it should be noted that this is
only an approximation (see p. 46).
Thus for linear molecules we have:

IB=IC IA= (2.1)

. Symmetric tops. Consider a molecule such as methyl fluoride, where the
three hydrogen atoms are bonded tetrahedrally to the carbon, as shown
below. As in the case of linear molecules, the end-over-end rotation in,

H\

H——C——F

and out of, the plane of the paper are still identical and we have Iy = I.
The moment of inertia about the C—F bond axis (chosen as the main
rotational axis since the centre of gravity lies along it) is now not negli-
gible, however, because it involves the rotation of three comparatively
massive hydrogen atoms off this axis. Such a molecule spinning about
this axis can be imagined as a top, and hence the name of the class. We
have then:

Symmetric tops: Ig=I-#1, Iy 0 (2.2)

There are two subdivisions of this class which we may mention: if, as
in methyl fluoride above, Iy = I, > I,, then the molecule is called a
prolate symmetric top; whereas if Iy = I < I, it is referred to as oblate.
An example of the latter type is boron trichloride, which, as shown, is
planar and symmetrical. In this case I, = 215 = 2],

. Spherical tops. When a molecule has all three moments of inertia ident-
ical, it is called a spherical top. A simple example is the tetrahedral
molecule methane CH,. We have then:

H

|
C
a7l N

Spherical tops: I, =1Ig= I, (2.3)
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In fact these molecules are only of academic interest in this chapter.
Since they can have no dipole moment-owing to their symmetry, rota-
tion alone can produce no dipole change and hence no rotational spec-
trum is observable.

4. Asymmetric tops. These molecules, to which the majority of substances
belong, have all three moments of inertia different:

Io# Ig# Ic (24)
Simple examples are water H,O, and vinyl chloride CH ,;—CHCI.

0
W u
H H

)
H/C \C]

Perhaps it should be pointed out that one can (and often does)
describe the classification of molecules into the four rotational classes in
far more rigorous terms than have been used above (see, for example,
Herzberg, Molecular Spectra and Molecular Structure, vol. IT). However,
for the purposes of this book the above description is adequate.

2.2 ROTATIONAL SPECTRA

We have seen that rotational energy, along with all other forms of molecu-
lar energy, is quantized: this means that a molecule cannot have any arbi-
trary amount of rotational energy (i.e, any arbitrary value of angular
momentum) but its energy is limited to certain definite values depending on
the shape and size of the molecule concerned. The permitted energy
values—the so-called rotational energy levels—may in principle be calcu-
lated for any molecule by solving the Schrodinger equation for the system
represented by that molecule. For simple molecules the mathematics in-
volved is straightforward but tedious, while for complicated systems it is
probably impossible without gross approximations. We shall not concern
ourselves unduly with this, however, being content merely to accept the
results of existing solutions and to point out where reasonable approxi-
mations may lead.

We shall consider each class of rotating molecule in turn, discussing the
linear molecule in most detail, because much of its treatment can be directly
extended to symmetrical and unsymmetrical molecules,
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2.3 DIATOMIC MOLECULES

2.3.1 The Rigid Diatomic Molecule

We start with this, the simplest of all linear molecules, shown in Fig. 2.1.
Miasses m, and m, are joined by a rigid bar (the bond) whose length is

ro=r, +r; (2.5)

The molecule rotates end-over-end about a point C, the centre of gravity:
this is defined by the moment, or balancing, equation:

myry =myr, (2.6)
The moment of inertia about C is defined by:

o 2 2
I=myri +myr;

=myryry +myrr, (from (2.6))
= ryralmy + my) @7
But, from (2.5) and (2.6):
myry =myry, =my(ro —ry)
therefore,
2 m,ry and 15 - mro (2.8)
m1 + mz ml + m:
Replacing (2.8) into (2.7):
mym, .
] =————"— == ;
el (29)

where we have written g = m, m,/(m, + m,), and u is called the reduced
mass of the system. Equation (2.9) defines the moment of inertia con-
veniently in terms of the atomic masses and the bond lengih.

m,

@ e
S e

4+ ,

Figure 2.1 A rigid diatomic molecule treated as two masses, m, and m,, joined by a rigid bar
oflengthry=r, +r,.
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By the use of the Schrodinger equation it may be shown that the
rotational energy levels allowed to the rigid diatomic molecule are given by
the expression:

2

R 8n?1

J(J + 1) joules where J =0, 1, 2, ... (2.10)

In this expression h is Planck’s constant, and I is the moment of inertia,
either I, or I, since both are equal. The quantity J, which can take integral
values from zero upwards, is called the rotational quantum number: its re-
striction to integral values arises directly out of the solution to the Schré-
dinger equation and is by no means arbitrary, and it is this restriction
which effectively allows only certain discrete rotational energy levels to the
molecule.

Equation (2.10) expresses the allowed energies in joules; we, however,
are interested in differences between these energies, or, more particularly, in
the corresponding frequency, v = AE/h Hz, or wavenumber, 7 = AE/hc
cm ™', of the radiation emitted or absorbed as a consequence of changes
between energy levels. In the rotational region spectra are usually discussed
in terms of wavenumber, so it is useful to consider energies expressed in
these units. We write:

JE"..I’

= E - 8nlle

JJ+)em™! (J=0,1,2..) (2.11)

where ¢, the velocity of light, is here expressed in cm s ™', since the unit of
wavenumber is reciprocal centimetres.
Equation (2.11) is usually abbreviated to:

g, =BJJ + 1)em™! =0 12..) (2.12)
where B, the rotational constant, is given by
h 1
=— i 2.13
8nlgzc i (415

in which we have used explicitly the moment of inertia I,. We might
equally well have used I and a rotational constant C, but the notation of
(2.13) is conventional.

From Eq. (2.12) we can show the allowed energy levels diagram-
matically as in Fig. 2.2. Plainly for J = 0 we have ¢, = 0 and we would say
that the molecule is not rotating at all. For J = 1, the rotational energy is
& = 2B and a rotating molecule then has its lowest angular momentum.
We may continue to calculate ¢; with increasing J values and, in principle,
there is no limit to the rotational energy the molecule may have. In practice,
of course, there comes a point at which the centrifugal force of a rapidly
rotating diatomic molecule is greater than the strength of the bond, and the
molecule is disrupted, but this point is not reached at normal temperatures.
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Figure 2.2 The allowed rotational energy levels of a rigid diatomic molecule.

Figure 2.3 Allowed transitions between the energy levels of a rigid diatomic molecule and the
spectrum which arises from them.

We now need to consider differences between the levels in order to
discuss the spectrum. If we imagine the molecule to be in the J = 0 state
(the ground rotational state, in which no rotation occurs), we can let incident
radiation be absorbed to raise it to the J =1 state. Plainly the energy
absorbed will be:

£5-y —€-0=2B—0=2B cm™!
and, therefore,
Vjm0-y=1=2B cm™! (2.14)

In other words, an absorption line will appear at 2B cm !. If now the
molecule is raised from the J = 1 to the J = 2 level by the absorption of
more energy, we see immediately:

Visisy=2 = Efug — fy=y

=6B—2B=4B cm™! (2.15)
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In general, to raise the molecule from the state J to state J + 1, we would
have:

Vymser =BU + 1)J +2) — BJ(J + 1)
¥ =B[J?+3J+2—(J%+J)]
or
Vyayer =2B(J + 1) cm™! (2.16)

Thus a stepwise raising of the rotational energy results in an absorption
spectrum consisting of lines at 2B, 4B, 6B, ..., cm ™!, while a similar lower-
ing would result in an identical emission spectrum. This is shown at the foot
of Fig. 2.3.

In deriving this pattern we have made the assumption that a transition
can occur from a particular level only to its immediate neighbour, either
above or below: we have not, for instance, considered the sequence of
transitions J =0—J =2—J =4 ... In fact, a rather sophisticated appli-
cation of the Schrodinger wave equation shows that, for this molecule, we
need only consider transitions in which J changes by one unit—all other
transitions being spectroscopically forbiddern. Such a result is called a selec-
tion rule, and we may formulate it for the rigid diatomic rotatoer as:

Selection rule: AJ = +1 (2.}1 7)

Thus Eq. (2.16) gives the whole spectrum to be expected from such a mol-
ecule.

Of course, only if the molecule is asymmetric (heteronuclear) will this
spectrum be observed, since if it is homonuclear there will be no dipole
component change during the rotation, and hence no interaction with radi-
ation. Thus molecules such as HCI and CO will show a rotational spec-
trum, while N, and O, will not. Remember also, that rotation about the
bond axis was rejected in Sec. 2.1: we can now see that there are two
reasons for this. Firstly, the moment of inertia is very small about the bond
so, applying Eqs (2.10) or (2.11) we see that the energy levels would be
extremely widely spaced: this means that a molecule requires a great deal of
energy to be raised from the J = 0 to the J = 1 state, and such transitions
do not occur under normal spectroscopic conditions. Thus diatomic (and
all linear) molecules are in the J = 0 state for rotation about the bond axis,
and they may be said to be not rotating. Secondly, even if such a transition
should occur, there will be no dipole change and hence no spectrum,

To conclude this section we shall apply Eq. (2.16) to an observed spec-
trum in order to determine the moment of inertia and hence the bond
length. Gilliam et al.t have measured the first line (J = 0) in the rotation

1 Gilliam, Johnson, and Gordy, Physical Review, T8, 140 (1950).
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spectrum of carbon monoxide as 3-842 35 cm ~'. Hence from Eq. (2.16):

oy =384235=2B cm™!
or,

B=192118 cm™!
Rewriting Eq. (2.13) as: I = h/8n?Bc, we have

g I 6626 x 1034 _ 279907 x 10~ ’
€O 7 82 % 299793 x 10'° x B B

= 14-5695, x 10~*7 kg m?

g m?

where we express the velocity of light in cm s ™*, since B is in cm ™~ '. But the
moment of inertia is ur? (cf. Eq. (2.9)) and, knowing the relative atomic
weights (H = 1-0080) to be C = 12:0000, O = 159994, and the absolute
mass of the hydrogen atom to be 1:67343 x 10”27 kg, we can calculate
the masses of carbon and oxygen, respectively, as 1992168 and
26:56136 x 10~%" kg. The reduced mass is then:

1992168 x 26:56136 x 104
m= 4648303 x 1027

= 11-38365 x 10727 kg

Hence:

2

r2=—=12799 x 1072 m?

I
H
and

reo = 0-1131 nm (or 1:131 A)

2.3.2 The Intensities of Spectral Lines

We want now to consider briefly the relative intensities of the spectral lines
of Eq. (2.16); for this a prime requirement is plainly a knowledge of the
relative probabilities of transition between the various energy levels. Does,
for instance, a molecule have more or less chance of making the transition
J =0—-J =1 than the transition J =1—J =27 We mentioned above
calculations which show that a change of AJ= +2, +3, etc, was
forbidden—in other words, the transition probability for all these changes is
zero. Precisely similar calculations show that the probability of all changes
with AJ = +1 is almost the same—all, to a good approximation, are
equally likely to occur.
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This does not mean, however, that all spectral lines will be equally
intense. Although the intrinsic probability that a single molecule in the
J = 0 state, say, will move to J = 1 is the same as that of a single molecule
moving from J =1 to J =2, in an assemblage of molecules, such as in a
normal gas sample, there will be different numbers of molecules in each
level to begin with, and therefore different total numbers of molecules will
carry out transitions between the various levels. In fact, since the intrinsic
probabilities are identical, the line intensities will be directly proportional to
the initial numbers of molecules in each level.

“The first factor governing the population of the levels is the Boltzmann
distribution (cf. Sec. 1.7.2). Here we know that the rotational energy in the
lowest level is zero, since J = 0, so, if we have N, molecules in this state, the
number in any higher state is given by:

Ny/No = exp (—E,/kT) = exp {—BhcJ(J + 1)/kT} (2.18)

where, we must remember, ¢ is the velocity of light in cm s~ ! when B is in
cm ™', A very simple calculaticn shows how N, varies with J; for example,
taking a typical value of B=2cm !, and room temperature (say
T = 300 K), the relative population in the J = 1 state is:

N, 2x663x107%* x3x10%x1x2
N, °XP 138 x 1027 x 300
=exp (—0-019) =~ 0-98

and we see that there are almost as many molecules in the J = 1 state, at
equilibrium, as in the J = 0. In a similar way the two graphs of Fig. 2.4
have been calculated, showing the more rapid decrease of N,/N, with
increasing J and with larger B.

A second factor is also required—the possibility of degeneracy in the
energy states. Degeneracy is the existence of two or more energy states
which have exactly the same energy. In the case of the diatomic rotator we
may approach the problem in terms of its angular momentum.

The defining equations for the energy and angular momentum of a
rotator are:

E = i P=lw

where I is the moment of inertia, w the rotational frequency (in radians per
second), and P the angular momentum. Rearrangement of these gives

P = . /2EI

The energy level expression of Eq. (2.10) can be rewritten :

2

h
2EI = J(J + I)ZR—

2
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Figure 2.4 The Boltzmann populations of the rotational encrgy levels of Fig. 2.2. The diagram
has been drawn taking values of B = 5 and 10cm ™ 'and T = 300K in Eq. (2.18).

and hence
h
P=.JJJ + l}i—];= JJ(J + 1) units (2.19)

where, following convention, we take h/2n as the fundamental unit of angu-
lar momentum. Thus we see that P, like E, is quantized.

Throughout the above derivation P has been printed in bold face type
to show that it is a vector—i.e., it has direction as well as magnitude. The
direction ‘of the angular momentum vector is conventionally taken to be
along the axis about which rotation occurs and it is usually drawn as an
arrow of length proportional to the magnitude of the momentum. The
number of different directions which an angular momentum vector may
take up is limited by a quantum mechanical law which may be stated:

‘For integral values of the rotational quantum number (in this case J),
the angular momentum vector may only take up directions such that its
component along a given reference direction is zero or an integral multiple
of angular momentum units.’
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Figure 2.5 The three degenerate orientations of the rotational angular momentum vector for a
molecule with J = 1.

We can see the implications of this most easily by means of a diagram.
In Fig. 2.5 we show the case J = 1. Here P = /1 x 2 units = ﬁ, and, as
Fig. 2.5(a) shows, a vector of length ﬁ{: 1:41) can have only three integ-
ral or zero components along a reference direction (here assumed to be
from top to bottom in the plane of the paper): +1, 0, and — 1. Thus the
angular momentum vector in this instance can be oriented in only three
different directions (Fig. 2.5(b){(d)) with respect to the reference direction.
All three rotational directions are, of course, associated with the same angu-
lar momentum and hence the same rotational energy: the J = 1 level is thus
threefold degenerate.

Figure 2.6(a) and (b) shows the situation for J = 2 (P = \/g} and J =3
(P = 2\/51 with fivefold and sevenfold degeneracy respectively. In general it
may readily be seen that each energy level is 2J + 1-fold degenerate.

Thus we see that, although the molecular population in each level
decreases exponentially (Eq. (2.18)), the number of degenerate levels avail-
able increases rapidly with J. The total relative population at an energy E,
will plainly be:

Population oc (2J + 1) exp (—E,/kT) (2.20)

When this is plotted against J the points fall on a curve of the type shown
in Fig. 2.7, indicating that the population rises to a maximum and then



(@) (b)

Figure 2.6 The five and seven degenerate rotational orientations for a molecule with J =2
and J = 3 respectively.
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Figure 2.7 The total relative populations, including degeneracy, of the rotational energy levels
of a diatomic molecule. The diagram has been drawn for the same conditions as Fig. 2.4.
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diminishes. Differentiation of Eq. (2.20) shows that the population is a max-
imum at the nearest integral J value to:

kT 1 2.21)

2heB 2

We have seen that line intensities are directly proportional to the popu-
lations of the rotational levels, hence it is plain that transitions between
levels with very low or very high J values will have small intensities while
the intensity will be a maximum at or near the J value given by Eq. (2.21).

Maximum population: J =

2.3.3 The Effect of Isotopic Substitution

When a particular atom in a molecule is replaced by its isotope—an ele-
ment identical in every way except for its atomic mass—the resulting sub-
stance is identical chemically with the original. In particular there is no
appreciable change in internuclear distance on isotopic substitution. There
is, however, a change in total mass and hence in the moment of inertia and
B value for the molecule.

Considering carbon monoxide as an example, we see that on going
from '2C'®O to '*C'°O there is a mass increase and hence a decrease in
the B value. If we designate the '*C molecule with a prime we have B > B'.
This change will be reflected in the rotational energy levels of the molecule
and Fig. 2.8 shows, much exaggerated, the relative lowering of the '3C
levels with respect to those of '?C. Plainly, as shown by the diagram at the
foot of Fig. 2.8, the spectrum of the heavier species will show a smaller
separation between the lines (2B') than that of the lighter one (2B). Again
the effect has been much exaggerated for clarity, and the transitions due to
the heavier molecule are shown dashed.

Observation of this decreased separation has led to the evaluation of
precise atomic weights. Gilliam et al., as already stated, found the first
rotational absorption of '?C'°O to be at 3-84235 cm™!, while that of
'3C'°0 was at 3-67337 cm~!. The values of B determined from these
figures are:

B=192118 cm™! and B’ = 183669 cm !

where the prime refers to the heavier molecule. We have immediately:

where u is the reduced mass, and the internuclear distance is considered
unchanged by isotopic substitution. Taking the mass of oxygen to be
15-9994 and that of carbon-12 to be 12-00, we have:

*_]_046_ 15:9994m’ o 12+ 159994
h 159994 + m' 12 x 159994

® =
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Figure 2.8 The effect of isotopic substitution on the energy levels and hence rotational spec-
trum of a diatomic molecule such as carbon monoxide.

from which m’, the atomic weight of carbon-13, is found to be 13-0007. This
is within 0-02 per cent of the best value obtained in other ways.

It is noteworthy that the data quoted above were obtained by Gilliam
et al. from '*C'®O molecules in natural abundance (i.e., about 1 per cent of
ordinary carbon monoxide). Thus, besides allowing an extremely precise
determination of atomic weights, microwave studies can give directly an
estimate of the abundance of isotopes by comparison of absorption inten-
sities.

2.3.4 The Non-Rigid Rotator

At the end of Sec. 2.3.1 we indicated how internuclear distances could be
calculated from microwave spectra. It must be admitted that we selected
our data carefully at this point—spectral lines for carbon monoxide, other
than the first, would not have shown the constant 2B separation predicted
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Table 2.1 Rotation spectrum of hydrogen fluoride

‘_'nha.f inlu.: Aﬁnbl. B r
J em™") (em™') (em™') (=1A)) (nm)

0 41-08 41-11

41-11 20-56 0-0929
1 82-19 82-18

40-96 20-48 00931
2 12315 123-14

40-85 20-43 0-0932
3 164-00 163-94

40-62 20-31 0-0935
+ 204-62 204-55

40-31 20-16 0-0938
5 244-93 244-89

40-08 20-04 0-0941
6 285-01 284-93

39-64 19-82 0-0946

7 324-65 324-61
39-28 19-64 0-0951
8 363-93 363-89

38-89 19-45 0-0955
9 402-82 402-70

3831 19-16 0-0963
10 441-13 441-00

3781 18-91 00969

11 478-94 478-74

T Lines numbered according to ¥, = 2B{J + 1) cm~",
Observed data from ‘An Examination of the Far Infra-red
Spectrum of Hydrogen Fluoride’ by A. A. Mason and A. H.
Nielsen, published as Scientific Report No. 5, August 1963,
Contract No. AF 19(604)-7981, by kind permission of the
authors.

I See Sec. 2.3.5 for details of the calculation.

by Eq. (2.16). This is shown by the spectrum of hydrogen fluoride given in
Table 2.1; it is evident that the separation between successive lines (and
hence the apparent B value) decreases steadily with increasing J.

The reason for this decrease may be seen if we calculate internuclear
distances from the B values. The calculations are exactly similar to those of
Sec. 2.3.1 and the results are shown in column 6 of Table 2.1. Plainly the
bond length increases with J and we can see that our assumption of a rigid
bond is only an approximation; in fact, of course, all bonds are elastic to
some extent, and the increase in length with J merely reflects the fact that
the more quickly a diatomic molecule rotates the greater is the centrifugal
force tending to move the atoms apart.

Before showing how this elasticity may be quantitatively allowed for in
rotational spectra, we shall consider briefly two of its consequences. First,
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when the bond is elastic, a molecule may have vibrational energy—i.e., the
bond will stretch and compress periodically with a certain fundamental
frequency dependent upon the masses of the atoms and the elasticity (or
force constant) of the bond. If the motion is simple harmonic (which, we
shall see in Chapter 3, is usually a very good approximation to the truth)
the force constant is given by:

k = 4n’@*c?u (2.22)

where @ is the vibration frequency (expressed in cm '), and ¢ and u have
their previous definitions. Plainly the variation of B with J is determined by
the force constant—the weaker the bond, the more readily will it distort
under centrifugal forces.

The second consequence of elasticity is that the quantities » and B vary
during a vibration. When these quantities are measured by microwave tech-
niques many hundreds of vibrations occur during a rotation, and hence the
measured value is an average. However, from the defining equation of B we
have:

h h

B  T——— R —
8ntlc  8nicur?

or
Boc 1/r? (2.23)

since all other quantities are independent of vibration. Now, although in
simple harmonic motion a molecular bond is compressed and extended an
equal amount on each side of the equilibrium distance and the average
value of the distance is therefore unchanged, the average value of 1/r? is not
equal to 1/rZ, where r, is the equilibrium distance. We can see this most
easily by an example. Consider a bond of equilibrium length 0-1 nm vibrat-
ing between the limits 0-09 and 0-11 nm. We have:

_ 009 +011

<r>a\r. R 01=r

2 e
but

= 103-05 nm?

1 (1/0-09)2 + (1/0-11)?
<r> . 2

and therefore {r),, = ./1/103-5 = 0-0985 nm. The difference, though small,
is not negligible compared with the precision with which B can be measured
spectroscopically. And in fact the real situation is rather worse. We shall see
in Chapter 3 that real vibrations are not simple harmonic, since a real bond
may be stretched more easily than it may be compressed, and this usually
results in r,, being greater than r,, .
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It is usual, then, to define three different sets of values for B and r. At
the equilibrium separation, r,, between the nuclei, the rotational constant is
B.; in the vibrational ground state the average internuclear separation is ro
associated with a rotational constant B,; while if the molecule has excess
vibrational energy the quantities are r, and B,, where v is the vibrational
quantum number,

During the remainder of this chapter we shall ignore the small differ-
ences between By, B,, and B,—the discrepancy is most important in the
consideration of vibrational spectra in Chapter 3.

We should note, in passing that the rotational spectrum of hydrogen
fluoride given in Table 2.1 extends from the microwave well into the infra-
red region (cf. Fig. 1.4). This underlines the comment made in Chapter 1
that there is no fundamental distinction between spectral regions, only dif-
ferences in technique. Since hydrogen fluoride, together with other diatomic
hydrides, has a small moment of inertia and hence a large B value, the
spacings between rotational energy levels become large and fall into the
infra-red region after only a few transitions. Historically, indeed, the mo-
ments of inertia and bond lengths of these molecules were first determined
from spectral studies using infra-red techniques.

2.3.5 The Spectrum of a Non-Rigid Rotator

The Schrédinger wave equation may be set up for a non-rigid molecule, and
the rotational energy levels are found to be:

h? h*
EJ=HJ{J+ 1)—3—mﬁu +1)*]
or
&= E;/hc = BJ(J + 1) — DJ¥J + 1) cm ™! (2.24)

where the rotational constant, B, is as defined previously, and the cemri\
Jugal distortion constant D, is given by: 5

h? .

=———— cm" 2.5

20 ke O (223)

which is a positive quantity. Equation (2.24) applies for a simple harmonic
force field only; if the force field is anharmonic, the expression becomes:

€ =BJUJ + 1) = DJ*J + 1)> + HI*J + 1) + KJ*J + 1)* - cm "
(2.26)

where H, K, etc,, are small constants dependent upon the geometry of the
molecule. They are, however, negligible compared with D and most modern
spectroscopic data are adequately fitted by Eq. (2.24).
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From the defining equations of B and D it may be shown directly that

3.2 2 3
D 2.27)
k @
where @ is the vibrational frequency of the bond, and k has been expressed
according to Eq. (2.22). We shall see in Chapter 3 that vibrational fre-
quencies are usually of the order of 10° cm !, while B we have found to be
of the order of 10 cm ™. Thus we see that D, being of the order 102 ¢cm ¢,
is very small compared with B. For small J, therefore, the correction term
DJ*(J + 1)* is almost negligible, while for J values of 10 or more it may
become appreciable.

Figure 2.9 shows, much exaggerated, the lowering of rotational levels
when passing from the rigid to the non-rigid diatomic molecule. The spectra
are also compared, the dashed lines connecting corresponding energy levels
and transitions of the rigid and the non-rigid molecules. It should be noted
that the selection rule for the latter is still AJ = +1.

We may easily write an analytical expression for the transitions:

Ere1 — & =¥, =B[(J + INJ + 2) — J(J + 1)]
— D[(J + 1*(J +2)* — J¥J + 1)?]
=2B(J + 1) — 4D(J + 1)? cm ™! (2.28)

where v, represents equally the upward transition from J to J + 1, or the
downward from J + 1 to J. Thus we see analytically, and from Fig. 2.9, that
the spectrum of the elastic rotor is similar to that of the rigid molecule
except that each line is displaced slightly to low frequency, the displacement
increasing with (J + 1)*.

A knowledge of D gives rise to two useful items of information. Firstly,
it allows us to determine the J value of lines in an observed spectrum. If we
have measured a few isolated transitions it is not always easy to determine
from which J value they arise; however, fitting Eq. (2.28) to them—
provided three consecutive lines have been measured—gives unique values
for B, D, and J. The precision of such fitting is shown by Table 2.1 where
the wavenumbers are calculated from the equation:

v, =41-1122J + 1) — 852 x 1073 J + 1)  cm ™! (2.29)

Secondly, a knowledge of D enables us to determine—although rather
inaccurately—the vibrational frequency of a diatomic molecule. From the
above data for hydrogen fluoride and Eq. (2.27) we have:

4B*
@ ==~ =16:33 x 10° (cm~')?

@ =~ 4050 cm !
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Figure 2.9 The change in rotational energy levels and rotational spectrum when passing from
a rigid to a non-rigid diatomic molecule. Levels on the right calculated using D = 107 3B.

In the next chapter we shall see that a more precise determination leads to
the value 4138-3 cm™'; the two per cent inaccuracy in the present calcu-
lation is due partly to the assumption of simple harmonic motion, and
partly to the very small, and hence relatively inaccurate, value of D.

The force constant follows directly:
k= 4n?c?o*u =960 N m~!

which indicates, as expected, that H—F is a relatively strong bond.
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24 POLYATOMIC MOLECULES

2.4.1 Linear Molecules

We consider first molecules such as carbon oxysulphide OCS, or chloro-
acetylene HC=CCI, where all the atoms lie on a straight line, since this
type gives rise to a particularly simple spectra in the microwave region.
Since Iy = I¢; I, = 0, as for diatomic molecules, the energy levels are given
by a formula identical with Eq. (2.26), i.e.,

gy =BJWJ + 1) — DJ*J + 1) + -~ cm ! (2.30) .

and fhe spectrum will show the same 2B separation modified by the distor-
tion constant. In fact, the whole of the discussion on diatomic molecules
applies equally to all linear molecules; three points, however, should be
underlined:

1. Since the moment of inertia for the end-over-end rotation of a polyato-
mic linear molecule is considerably greater than that of a diatomic mol-
ecule, the B value will be much smaller, and the spectral lines more
closely spaced. Thus B values for diatomic molecules are about 10 cm ™!,
while for triatomic molecules they can be 1 cm ™! or less, and for larger
molecules smaller still.

2. The molecule must, as usual, possess a dipole moment if it is to exhibit a
rotational spectrum. Thus OCS will be microwave active, while OCO
(more usually written CO,) will not. In particular, it should be noted
that isotopic substitution does not lead to a dipole moment since the
bond lengths and atomic charges are unaltered by the substitution. Thus
16QC!8Q is microwave inactive.

3. A non-cyclic polyatomic molecule containing N atoms has altogether
N — 1 individual bond lengths to be determined. Thus in the triatomic
molecule OCS there is the CO distance, r¢o, and the CS-distance, rcg.
On the other hand, there is only one moment of inertia for the end-over-
end rotation of OCS, and only this one value can be determined from the
spectrum. Table 2.2 shows the data for this molecule. Over the four lines
observed there is seen to be no appreciable centrifugal distortion, and,
taking the value of B as 0-2027 cm ™!, we calculate:

h
Iy= m = 13795 x 10~%7 kg m?

From this one observation it is plainly impossible to deduce the two

unknowns, roo and rg. The difficulty can be overcome, however, if we

study a molecule with different atomic masses but the same bond

lengths—i.e., an isotopically substituted molecule—since this will have a

different moment of inertia.
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Table 2.2 Microwave spectrum of carbon oxy-

sulphide
JoJ+1 i, (em™Y) AV B (cm™?)
0—1

2 x 0-4055 0-2027

1—2 0-8109
0-4054 0-2027

23 1-2163
0-4054 0-2027

3—4 1-6217
. 04054 0-2027

45 2:0271

Let us consider the rotation of OCS in some detail. Figure 2.10 shows
the molecule, where rq, e, and rg represent the distances of the atoms from
the centre of gravity. Consideration of moments gives:

Moro + Mcre = Mgrg (2.31)
where m, is the mass of atom i. The moment of inertia is:
I=mord + meré + mgr? (2.32)
and we have the further equations: .
To =Ttco + ¢ Fs =Tcs — Ic (2.33)

where rco and rqg are the bond lengths of the molecule. It is these we wish
to determine. Substituting (2.33) in (2.31) and collecting terms:

(me + mg + mg)re = mgres — Mo reg

or
Mre =msres — moreo (2.34)
meg me mg
| m = |

N/

PRRIRRNNE, L it

cg.

Figure 2.10 The molecule of carbon oxysulphide, OCS, showing the distances of eich atom
from the centre of gravity.
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where we write M for the total mass of the molecule. Substituting (2.33) in
(2.32): -

I =mo(reo + ro)* + meré + my(res — re)’?
= Mr + 2rdmorco — Msrcs) + Moréo + mgrés
and finally substituting for r. from Eq. (2.34):

2
(morco — Msrcs)
Jr=”"0"(2:0“‘ms-"és"_ M
4

(2.35)

Considering now the isotopic molecule, '*OCS, we may write mg, for
mg throughout Eq. (2.35): )
(Mmoreo — Msres)’

Mn‘

I' = myrio + mgrés — (2.36)
and we can now solve for ro and rs, provided we have extracted a value
for I' from the microwave spectrum of the isotopic molecule. Note that we
do not need to write rg, since we assume that the bond length is unaltered
by isotopic substituticn. This assumption may be checked by studying the
molecules '*0OC34S and '®*0C?34S, since we would then have four moments
of inertia. The bond distances found are quite consistent, and hence: justify
the assumption.

The extension of the above discussion to molecules with more than
three atoms is straightforward it suffices to say here that microwave studies
have led to very precise determinations of many bond lengths in such
molecules.

2.4.2 Symmetric Top Molecule

Although the rotational energy levels of this type of molecule are more
complicated than those of linear molecules, we shall see that, because of
their symmetry, their pure rotational spectra are still relatively simple.
Choosing methyl fluoride again as our example we remember that

Ip=Ic#I, I1,+0

There are now two directions of rotation in which the molecule might
absorb or emit energy—that about the main symmetry axis (the C—F bond
in this case) and that perpendicular to this axis.

We thus need two quantum numbers to describe the degree of rotation,
one for I, and one for Iy or I.. However, it turns out to be very convenient
mathematically to have a quantum number to represent the total angular
momentum of the molecule, which is the sum of the separate angular mo-
menta about the two different axes. This is usually chosen to be the quan-
tum number J. Reverting for a moment to linear molecules, remember that
we there used J to represent the end-over-end rotation of a molecule:
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however, this was the only sort of rotation allowed, so it is quite consistent
to use J, in general, to represent the total angular momentum. It is then
conventional to use K to represent the angular momentum about the top
axis—i.e., about the C—F bond in this case.

Let us briefly consider what values are allowed to K and J. Both must,
by the conditions of quantum mechanics, be integral or zero. The total
angular momentum can be as large as we like, that is, J can be 0, 1,
2,..., 0 (except, of course, for the theoretical possibility that a real molecule
will be disrupted at very high rotational speeds). Once we have chosen J,
however, K is rather more limited. Let us consider the case when J = 3.
Plainly the rotational energy can be divided in several ways between
motion about the main symmetry axis and motion perpendicular to this. If
all the rotation is about the axis, K = 3; but note that K cannot be greater
than J since J is the total angular momentum. Equally we could have
K =2, 1, or 0, in which case the motion perpendicular to the axis increases
accordingly. Additionally, however, K can be negative—we can imagine
positive and negative values of K to correspond with clockwise and anti-
clockwise rotation about the symmetry axis—and so can have values —1,
—2,0or —3.

In general, then, for a total angular momentum J, we see that K can
take values:

K=J,J—1Jd =20, —J=1), =J (2.37)

which is a total of 2J + 1 values altogether. This figure of 2J + 1 is import-
ant and will recur.

If we take first the case of a rigid symmetric top—i.e., one in which
the bonds are supposed not to stretch under centrifugal forces—the
Schrodinger equation may be solved to give the allowed energy levels for
rotation as:

ey x = E; x/hc = BJ(J + 1) + (A — B)K* cm™* (2.38)
where, as before,

h d h
=———  an -
8n2lyc 8n%l ,c

Note that the energy depends on K2, so that it is immaterial whether the
top spins clockwise or anticlockwise: the energy is the same for a given
angular momentum. For all K > 0, therefore, the rotational energy levels
are doubly degenerate.

The selection rules for this molecule may be shown to be:

AJ = +1 (as before) and AK =0 (2.39)
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and, when these are applied to Eq. (2.38), the spectrum is given by:
€01 x— & k=75 x=BU + 1) +2) + (4 — BK?
—[BJ(UJ + 1) + (4 — B)K?]
=2B(J + 1) cm™! (2.40)

Thus the spectrum is independent of K, and hence rotational changes about
the symmetry axis do not give rise to a rotational spectrum. The reason for
this is quite evident—rotation about the symmetry axis does not change the
dipole moment perpendicular to the axis (which always remains zero), and
hence the rotation cannot interact with radiation. Equation (2.40) shows
that the spectrum is just the same as for a linear molecule and that only one
moment of inertia—that for end-over-end rotation—can be measured.

Both Eqs (2.38) and (2.40) are for a rigid molecule, however, and we
have already seen that microwave spectroscopy is well able to detect the
departure of real molecules from this idealized state. When centrifugal
stretching is taken into account, the energy levels become:

ey x = BJJ + 1)+ (A — BIK* — D, J*(J + 1)?

— D, JU + DK? — DgK* cm™' (241)

where, in an obvious notation, D;, D, and Dy are small correction terms
for non-rigidity. The selection rules are unchanged (Eq. (2.39)), and so the
spectrum is:

Vi k=¢€+1,k €1k
=2B(J + 1) —4D,(J + 1)* — 2D ;(J + DK? cm ! (2.42)

We see that the spectrum will be basically that of a linear molecule
(including centrifugal stretching) with an additional term depending on K2

It is easy to see why this spectrum now depends on the axial rotation
(i.e., depends on K), although such rotation produces no dipole change.
Figure 2.11 illustrates methyl fluoride for (a) K = 0, no axial rotation, and
(b) K > 0, the molecule rotating about the symmetry axis. We see, from the
much exaggerated diagram, that axial rotation widens the HCH angles and
stretches the C—H bonds. The distorted molecule (b) has a different
moment of inertia for end-over-end rotation from (a). If we write Eq. (2.42)
as:

B = AT 1Y B~2DJ + 1) — DipK?*] om™*

we can see more clearly that the centrifugal distortion constants D; and D,
can be considered as correction terms to the rotational constant B, and
hence as perturbing the moment of inertia /.

Since each value of J is associated with 2J + 1 values of K, we see that
each line characterized by a certain J value must have 2J + 1 components.



(@ K =0

H>—0

Figure 2.11 The influence of axial rotation on the moment of inertia of a symmetric top
molecule, e.g., methyl fluoride, CH,F. In (a) there is no axial rotation (K = 0), and in (b)
K >0.
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Figure 2.12 A diagrammatic representation of the rotational spectrum of the symmetric top
molecule methyl fluoride, CH,F.
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However, since K only appears as K* in Eq. (2.42), there will be only J + 1
different frequencies, all those with K > 0 being doubly degenerate. We may
tabulate a few lines as follows:

J=0,K=0 V,x=2B—4D, cm™!
J=1,K=0 V,x = 4B — 32D,

K=+1 ¥,,=4B—32D,—4D,, (2.43)
J=2,K=0 ¥, = 6B — 108D,

K=+1 Vg =6B — 108D, — 6D,
K=4+2 V;x = 6B — 108D, — 24D, , etc.

Let us now compare these with the observed spectrum of methyl fluo-
ride. This is shown as a line diagram in Fig. 2.12, and the frequencies are
tabulated in Table 2.3. Fitting these data to equations such as (2.43) leads
directly to:

B =0-851204 cm !
D; =200 x 10"%cm ™!
Dy =147 x 1073 cm ™!
The calculated frequencies of Table 2.3 show how precisely such measure-
ments may now be made.
Once again each spectrum examined yields only one value of B, but the
spectra of isotopic molecules can, in principle, give sufficient information for

the calculation of all the bond lengths and angles of symmetric top mol-
ecules, together with estimates of the force constant of each bond.

Table 2.3 Microwave spectrum of
methyl fluoride

J K F\cﬂu, T(CITI 2 l) Gul-n;. (Cl'll" :]
1 0 3-40475 3-404 752
1 3-404 70 3-404 693
2 0 5-10701 5-107 008
1 5:10692 5106920
2 5-106 65 5-106 655
3 0 6-809 12 6-809 120
1 6-809 00 6-809 002
2 i 6-808 65 6-808 649
3 6-808 06 6-808 062

t Taken from W. Gordy, Physical
Review, 93, 406 (1954), by kind permission
of the author.
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Table 2.4 Some molecular data determingd by microwave spectroscopy

Bond length Bond angle  Dipole momentt
Molecule  Type (nm) (deg.) (debyes)
NaCl Diatomic 023606 + 0-00001 - 85 + 02
‘ 0-1164 + 0-000 | (CO)
cos Linear 01559 + 0:0001 (CS) — 0712 + 0-004
_ 0106317 + 0-000005 (CH)
HCN Linear 0-115535 + 0000006 (CN) — 2986 + 0-004
NH, Sym. Top 0-1008 + 0-0004 1073402 1-47 + 0-01
0109 59 + 0-00005 (CH) 108:0 + 0-2
CH,Cl  Sym. Top 0-178 12 % 0:00005 (CCl) (HCH) 1-871 £ 0-005
H,0 Asym. Top  0:09584 + 0-00005 1045+ 03 1.846 + 0-005
0, Asym. Top 0-1278 + 0-:0002 1168 +0-5  0-53 + 0:02

t Measured from the Stark effect, cf Ssc. 2.5.2.

2.4.3 Asymmetric Top Molecules

Since spherical tops show no microwave spectrum (cf. Sec. 2.1(3)) the only
other class of molecule of interest here is the asymmetric top which has
(Sec. 2.1(4)) all three moments of inertia different. These molecules will not
detain us long since their rotational energy levels and spectra are very
complex—in fact, no analytical expressions can be written for them corre-
sponding to Eqs (2.24) and (2.28) for linear or Egs (2.41) and (2.42) for
symmetric top molecules. Each molecule and spectrum must, therefore, be
treated as a separate case, and much tedious computation is necessary
before structural parameters can be determined. The best method of attack
so far has been to consider the asymmetric top as falling somewhere
between the oblate and prolate symmetric top; interpolation between the
two sets of energy levels of the latter leads to a first approximation of the
energy levels—and hence spectrum—of the asymmetric molecule. It suffices
to say that arbitrary methods such as this have been quite successful, and
much very precise structural data have been published.

In order to give an idea of the precision of such measurements, we
collect in Table 24 some molecular data determined by microwave
methods, including examples from diatomic and linear molecules, sym-
metric tops, and asymmetric tops.

2.5 TECHNIQUES AND INSTRUMENTATION

2.5.1 Outline

It is not proposed here to give more than a brief outline of the techniques of
microwave spectroscopy since detailed accounts are available in some of the
books listed in the bibliography. Microwave spectroscopy, of course, fol-



MICROWAVE SPECTROSCOPY 67

lows the usual pattern: source, monochromator, beam direction, sample,
and detector. We shall discuss each in turn.

The source and monochromator. The usual source in this region is the
klystron valve which, since it emits radiation of only a very narrow
frequency range, is called ‘monochromatic’ and acts as its own mono-
chromator. The actual emission frequency is variable electronically and
hence a spectrum may be scanned over a limited range of frequencies
using a single klystron.

One slight disadvantage of this source is that the total energy radi-
ated is very small—of the order of milliwatts only. However, since all this
is concentrated into a narrow frequency band a sharply tuned detector
can be sufficiently activated to produce a strong signal.

Beam direction. This is achieved by the use of ‘waveguides—hollow
tubes of copper or silver, usually of rectangular cross-section—inside
which the radiation is confined. The waveguides may be gently tapered
or bent to allow focusing and directing of the radiation. Atmospheric
absorption of the beam is considerable, so the system must be efficiently
evacuated.

Sample and sample space. In almost all microwave studies so far the
sample has been gaseous. However, pressures of 0:01 mmHg are suffi-
cient to give a reascnable absorption spectrum, so many substances
which are usually thought of as solid or liquid may be examined provid-
ed their vapour pressures are above this value. The sample is retained by
very thin mica windows in a piece of evacuated waveguide.

Detector. It is possible to use an ordinary superheterodyne radio receiver
as detector, provided this may be tuned to the appropriate high fre-
quency; however, a simple crystal detector is found to be more sensitive
and easier to use. This detects the radiation focused upon it by the
waveguide, and the signal it gives is amplified electronically for display
on an oscilloscope, or for permanent record on paper.

4]

2.5.2 The Stark Effect

We cannot leave the subject of microwave spectroscopy without a brief
description of the Stark effect and its applications. A more detailed dis-
cussion is to be found in the books by Kroto and by Townes and Schawlow
mentioned in the bibliography.

Experimentally the Stark effect requires the placing of an electric field,

either perpendicular or parallel to the direction of the radiation beam,

across the sample. Practically it is simpler to have a perpendicular field. We
shall consider three advantages of this field.

1. A molecule exhibiting a rotational spectrum must have an electric dipole

moment, and so its rotational energy levels will be perturbed by the
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application of an exterior field since interaction will occur. Put simply,
the absorption lines of the spectrum will be shifted by an amount
depending on the extent of the interaction, and thus depending on both
E, the applied field, and g, the dipole moment. For a linear molecule the
shift is found to be:

Av o (LE)? (linear molecule)
while for a symmetric top:
Av oc uE (symmetric top)

Thus we have immediately a very accurate method of determining dipole"
moments, simply by observation of the Stark shift. More important, the
measurement is made on very dilute gas samples, so the dipole moment
observed may be taken to be that of the actual molecule, uncomplicated
by molecular interactions, solvent effects, etc. Some values determined in
this way are included in Table 2.4.

2. The second valuable application of the Stark effect is in the assignment
of observed spectral lines to particular J values. We have seen that, in
the absence of marked departure from rigidity and good resolving power,
the assignment of J values is not always obvious. The line of lowest
frequency which we observe may happen to correspond with J = 0, or it
may be that it is the first observable line of a series, either because earlier
lines are intrinsically very weak or because of limitations in the appar-
atus used. However, we have seen that each line is 2J + 1 degenerate
because rotations can occur in 2J + 1 orientations in space without
violating quantum laws. In the absence of any orienting effect these
transitions have precisely the same frequency, but a Stark field consti-
tutes an orienting effect, and splits the degeneracy; thus multiplet struc-
ture is observed for all lines with J > 0. The number of components
depends on J, and hence unambiguous assignments can be made.

3. The final application is purely an instrumental one, but is especially
interesting in that it has its counterpart in other spectral regions. We
have already referred to the concept of signal-to-noise ratio in Chapter
1; that part of the noise which arises from random fluctuations in the
background radiation may be removed by modulating the beam by
means of the Stark effect as explained below.

Imagine the application of a Stark field in a periodic manner such as
the ‘square-wave’ variation of Fig. 2.13; while the field is switched on the
signal is modified in the way described in 1 and 2 above. If we arrange the
modulation frequency to be some 100 to 1000 Hz, and construct the ampli-
fier so that it amplifies only the component of the signal which has the
modulated frequency, stray radiation which has not been through the mod-
ulating field will be completely ignored. This results in a great improvement
of the signal-to-noise ratio.
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Figure 2.13 A ‘square wave’ potential as used for Stark modulation.

A further refinement is to arrange for both the modulated and unmodu-
lated parts to be amplified separately and displayed on the same
oscilloscope—the modulated part on the upper half, say, and the unmodu-
lated on the lower. This much facilitates the measurement of the Stark
splittings discussed in 1 and 2 above.

2.6 CHEMICAL ANALYSIS BY MICROWAVE
SPECTROSCOPY

Improvements and simplifications in the techniques of microwave spectros-
copy are now allowing it to move away from being purely a specialist
research instrument towards becoming a technique for routine analysis.
Even though effectively limited to gaseous samples, it has much to offer in
this respect, since it is a highly sensitive (0-01 mmHg pressure is adequate)
and specific analytical tool.

The microwave spectrum of a substance is very rich in lines since many
rotational levels are populated at room temperatures, but since the lines are
very sharp and their positions can be measured with great accuracy, obser-
vation of just a few of them is sufficient, after comparison with tabulated
data, to establish the presence of a previously examined substance in a
sample. And the technique is quantitative, since the intensity of a spectrum
observed under given conditions is directly dependent on the amount of
substance present. Thus mixtures can be readily analysed.

It is the whole molecule, by virtue of its moment(s) of inertia, which is
examined by microwave spectroscopy. This means that the technique
cannot detect the presence of particular molecular groupings in a sample,
like —OH or —CH, (cf. the chapters on infra-red, raman, and magnetic
resonance spectroscopy later), but it can readily distinguish the presence of
isotopes in a sample, and it can even detect different conformational iso-
mers, provided they have different moments of inertia.
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One fascinating area where microwave analysis is being used is in the
chemical examination of interstellar space. Electronic spectroscopy has long
been able to detect the presence of various atoms, ions, and a few radicals
(e.g., —OH) in the light of stars, but recently, use of microwaves has ex-
tended the analysis to the detection of simple stable molecules in space.
Some 30 or so molecules have already been characterized in this way, the
earliest among them (water, ammonia, and formaldehyde) giving new im-
petus to speculations regarding the origins of biological molecules and of
life itself. Such observations concern the emission of microwaves by these
molecules and, by comparing the relative intensities of various rotational
transitions, particularly in the spectrum of ammonia, accurate estimates can
be made of the temperature of interstellar material.
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PROBLEMS

(Useful constants: h=6:626 x 107* Js; k= 1381 x 1072 JK'; ¢ = 2998 x 10 m s~ !;
8n® = 78-956; atomic masses: 'H = 1673 x 10~27 kg; *D=3344x 10?7 kg:
YF=3155x 107" kg; %Cl=5806 x 10727  kg; 37Cl = 6138 x 1027 kg;
T9Br = 13103 x 10727 kg)

2.1 The rotational spectrum of "*Br'°F shows a series of equidistant lines spaced 0-71433
cm ™" apart. Calculate the rotational constant B, and hence the moment of inertia and bond
length of the molecule. Determine the wavenumber of the J = 9— J = 10 transition, and find
which transition gives rise to the most intense spectral line at room temperature (say 300 K).
2.2 Using your answers to Prob. 2.1, calculate the number of revolutions per second which the
BrF molecule undergoes when in (a) the J = 0 state, (b) the J = 1 state, and (¢) the J = 10
state.

Hint: Use E = {Iw? in conjunction with Eqs (2.10) and (2.13), but remember that here
is in radians per second.
2.3 The rotational constant for H**Cl is observed to be 10-5909 ¢cm ~!. What are the values of
B for H*'Cl and for *D?*3C1?

2.4 Three consecutive lines in the rotational spectrum of H°Br are observed at 84-544,
101:355 and 118-112 cm™'. Assign the lines to their appropriate J” -+ .J' transitions, then
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deduce values for B and D, and hence evaluate the bond Icngth and approximate vibrational
frequency of the molecule.

2.5 Sketch a diagram similar to that of Fig. 2.7, using B=5 cm™" and a temperature of
1600 K.

Note: Find the maximum and calculate only two or three points on either side—don't
attempt to carry out the calculation for every value of J.
2.6 The bond lengths of the linear molecule H—C=N are given in Table 2.4. Calculate I and
B for HCN and for DCN, using relative atomic massesof H=1,D=2,C=12and N =
2.7 The diatomic molecule HCI has a B value of 10-593 cm ™' and a centrifugal distortion
constant D of 53 x 107* em™'. Estimate the vibrational frequency and force constant of the
molecule. The observed vibrational frequency is 2991 cm™'; explain the discrepancy.



Rotational spectroscopy

- Involve transitions between rotational states of the
molecules (gaseous state!)

- Energy difference between rotational levels of molecules has the same
order of magnitude with microwave energy

- Rotational spectroscopy is called pure rotational spectroscopy, to
distinguish it from roto-vibrational spectroscopy (the molecule changes its
state of vibration and rotation simultaneously) and vibronic spectroscopy (the
molecule changes its electronic state and vibrational state simultaneously)

Molecules do not rotate around an arbitrary axis!
Generally, the rotation is around the mass center of the molecule.

The rotational axis must allow the conservation of

o M=>R xp =const
kinetic angular momentum. Z o XPa

o



Molecular \ —

Energy Levels
ie., typically AE, >> AE ;, >> AE_,
AE,
Different electronic states AE,
(electronic arrangements) N
Electronic Vibrational Rotational
AE ~ 2x10°-105cm? 102-5x103cmt| 37300 GHZ
N (0.1-10cm?)
Transitions at A = 500 - 100 nm lcm—2um
. 10cm—=1mm
Vis — UV infrared

microwave



Rotational spectroscopy

>130 molecules / ions have been identified in interstellar space by their rotational
emission spectra (rf-astronomy)

H, C, c-C,H G C.H CH CH,C,N CH,C,LH  CH,C.N? HCeM  cHsocsHs HC,N
AIF C,H  I-C3H  C4H I-H,C, CH,CHCN HCOOCH, CH,CH,CN (CH3),CO

AICI C20 C,N CA4Si C2H4 CH3C2H  CH,COOH? (CH3),0  NH,CH,COOH

C, C258 40 I-C3H2  CH,CN HC5N CTH CHyCH;OH CH,CH,CHO

CH CH2 8 c-C3IH2  CHyNC HCOCH3  H,C, HCTN

CH+ HCN  C,H, CH2CN CH,0H NHZCH3  CH,OHCO C8H

CN HCO CHyD+ CH, CH,SH ¢-C,H,0  CH,CHCHO

CO HCO® HCCM  HC,N  HC,NH+  CH,CHOH

CO* HCS+ HCNH+ HC2NC HC2CHO

CP  HOC+ HNCO HCOOH NH,CHO

CSi H,0  HNCS H2CHN C.MN

HCl H,S  HOCO+ H,C,0 HCN

KCI HNC  H,CO  HZNCN

NH O OHNO  HICN HNCS NIST & National Radio Astronomy Lab.
MO MgCHN H,CS  SiH,

NS MgNC H,0*  H,COH*



Rotation of diatomic molecule - Classical description

Diatomic molecule = a system formed by 2 different masses linked together
with a rigid connector (rigid rotor = the bond length is assumed to be fixed!).

The system rotation around the mass e ! |
center is equivalent with the rotation of a R ~ R .
particle with the mass u (reduced mass) 0 :

around the center of mass.

m, +m,

. . 2 2 2 2
The moment of inertia: 1 =D_mr> =mr? + m,r} = 4R* =
i

Moment of inertia (1) is the rotational equivalent of mass (m).
Angular velocity (o) is the equivalent of linear velocity (v).

E, — rotational kinetic energy

L = lo — angular momentum




Quantum rotation: The diatomic rigid rotor

The rigid rotor represents the quantum mechanical “particle on a sphere”

problem:
; Rotational energy is purely kinetic energy (no potential):
7 y
- ~ D7 e N 0 0 0
! Hy =—+ V(X =—inv  V=(—,—, nabla
/ i X) P ( X'y 62)
B ; h?
e\ Schrodinger equation: Hy=-—V*¥Y=E¥
A 20
VZ — 62 + 82 + 62 . . . .
T oyt ot Laplacian operator in cartesian coordinate
, 10(,0 1 o(. .0 1 0 :
v —r—zg(f g}rzsine%(“”@%}maﬁ& spherical coordonate
] : : o
For r = constant (5 = (), Schrodinger equation simplifies to:

— - + -
21| sin® 00 00 ) sin’0 o’

hz{ 1 9 (Sin 0 aj 1 & }y(e,q)): EY(6,9)



The solutions resemble those of the "particle on a ring":
Y|m, (O9) = ®|m. (Q)Tm, (#) — separation of variable

Y(+2m) = Y(¢) — cyclic boundary conditions

eimJ¢§ _ .
¥ (g)= — wavefunctions (rotational)
2
@ E..(J.m;)=JJ+1) % — eigenvalues (energy)

J=0,1, 2, 3....(rotational quantum number)
m; =0, £1, +2, ... £J (projection of J)

E_,=hcBJ(J+1)| — the rotational energy of a molecule

-

H
h h _ ) H, 60.85cm?
== ~| — rotational constant (incm?) |3 a3
87°c-1 8x°c-uR HCl  10.59 e




Obs:

— Rotational energy levels get more widely space with increasing J!

E,., =hcBI(J+1)

ErotO =0

E.; =hc-30B
E...=hc-20B

E,;=hc-12B
E.,=hc-6B
E..=hc-2B
E.o=0

30B

Pt
=
m

12B

Wavenumber [/ em?

6B
2B

— There iIs no zero point energy associated with rotation!

L




Obs: h
B= 2 2
8n°c-uR

— For large molecules (p): - the moment of inertia (l) is high,
- the rotational constant (B) is small
For large molecules the rotational levels are closer than for small
molecules.

— From rotational spectra we can obtain some information about
geometrical structure of molecule (r):
For diatomic molecule we can calculate the length of bond!

— Diatomic molecules rotations can partial apply to linear polyatomic
molecules.

— An isotopic effect could be observed: B ~ 1/(uR?)

.'H‘.I..r.'r_?- _ 37u.u 36U
i .. 38y 35u.u

oy W

HEg

=1.0015




Rotational wavefunctions

General solution:

m, =0, £1, £2, £3 .. when imposing
cyclic boundary conditions:

P(o+2m) = ¥(¢)

Rotational wavefunctions are imaginary
functions!

It is useful to plot the real part to see
their symmetries: odd and even J levels
have opposite parity.

Rotational wave functions parity = (-1)”




Degeneracy of Rotational Levels

In the absence of external fields energy of rotational levels only
determined by J (all m; = -J, ...+J) share the same energy. Therefore, rotational

levels exhibits (2J+1) fold degeneracy (arising from the projection quantum
number m;).

Both the magnitude and direction (projection) of rotational angular
momentum is quantized. This is reflected in the two quantum numbers:

J (magnitude)
m (direction/projection).
Taking the surface normal as the
quantization axis, m; = 0 corresponds to out

of-plane rotation and m; = J corresponds to
in-plane rotation.

| m,=J,J-1,...,-J

Rotation in the . Rotation out of the
plane of the paper = plane of the paper.



J . .
308 | oooo: Populations of rotational levels

E,
- N; = N,yg; exp(—ﬁj Boltzmann distribution
£
T ‘0B eeeee 4 g =2J+1 degeneracy
a
E E.,=hcBJ(J+1) rotational energy
=
=
> hcBJI(J +1
£ 12866663 Nj:N0(2J+l)exp(— k(T )j
68 |miguigiuigins 2
dN
33 ¢% The most populated level occurs for: dJJ =0
N, {2 (2141 th} oxp| _MEBIO+D) )
dJ kT kT o)
, hcB o
2_ 2\] 1 I 0 0.03
@+ D7 okt
2hcB 2 oo




Rotational spectroscopy (Microwave spectroscopy)

Molecules can absorb energy from microwave range in order to
change theirs rotational state (hv = AE,; = E,yqup) = Erotinn)-

Gross Selection Rule:

For a molecule to exhibit a pure rotational spectrum it must
posses a permanent dipole moment. (otherwise the photon has no
means of interacting “nothing to grab hold of”)

— a molecule must be polar to be
able to interact with microwave. 5—

— a polar rotor appears to have an
oscillating electric dipole.

Homonuclear diatomic molecules
such as O,, H,, do not have a dipole b)
moment and, hence, no pure rotational
spectrum!




Specific Selection Rule: AJ =1 Am;=0,%1

Only for diatomic molecules (linear molecules)!

The specific selection rule derive from conservation of angular momentum.

But need to change parity (see rotational wavefunctions)!

Schrodinger equation explains the specific selection rule (AJ=%1):

U, = I \Ilf lu\}li f - final state, i initial state

I, - transition dipol moment

The molecule absorbed microwave radiation (change its rotational state)
only if integral is non-zero (AJ =1 ): the rotational transition is allowed!

If the integral is zero, the transition is forbidden!



Rotational transitions

— AE t ErotJ _ErotJ E h J
Vv = ot — 2 L — CB\] (vJ +1)
(0,-3) he he rotJ 30Bf———%—>
Vigogy) = BJz(Jz +1)_ B‘]l(‘]l +1)
_ 2 2 '
Via,53,) :B'(‘Jz +J, - _‘]1) E 208 A
J,=J,+1 E
_ =
Vg oy = B+ 20, +3,2 4143, -3 -3, ) 5
¥
_ s 12B 3
Vg, 53,4 = 2B- (‘]1 +1) =
6B 2
v, rotational transition wavenumber 2B 1
0 0

J, rotational quantum number of inferior state

J, rotational quantum number of superior state

Vr(J2-1—>J2) =2B-J,



Rotational spectra have a lot of peaks (v,) spaced by 2B (Av,).

Vr(0—>1) =2B;

- AV, =2B

vr(1—>2) =4B|

- AV, =2B

Vieos = 0B]

- AV, =2B

ViGa) = 8B/

(cm™)

(cm™) (cm™)

2B

2B

6B

4B 2B

wWiN|IF|O

12B

6B 2B

11&3‘-___ ___ I=3
E [:c:nil} T T
6B+ ——L — I=2
B 4+ _ Ll =1
0+ J=0
| JE

AAAAAA

0 2B 4B 6B 0B 12B



4 I
3 2
' ‘ 2 E 2B | 2B | 2B
1 t1] E
v 2B L 68 8B

Energy

The rotational transitions are separated by 2B in the observed spectrum!
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Tramsmission

Rotational Spectrum of CO

Rotational spectrum

of CO (300K)
EZF..HI_FI
=B(J+1)(J+2)-BJ(J+1)
=2B(J+1)

Transitions in the microwave region:

1-100 cmt (A =1 cm — 100 pum)

Lines spaced by 28

f Flem™' 8D

J’I

— F, = E, /hc rotational spectral terms

Spectral Profile governed by population of lower
levels and J dependence of the transition strength.



Beyond the Rigid Rotor: Centrifugal Distortion
The rigid rotor model holds for rigid rotors.

Molecules are not rigid rotors — their bonds stretch during rotation

As a result, the moment of inertia | change with J.

For real molecule, the rotational constant B depend on rotational
guantum number J!

It is more convenient to treat
centrifugal distortion as a perturbation
to the rigid rotor terms.

In real rotational spectra the F()=BJ(J+D)=D[J(J +D]
peaks are not perfectly equidistant: Centritugal 1, _ 4B,
Cent”fugal d IStO I’thﬂ (D) . « The effect of rotation on a molecule. Th:gcentrifugal force arising from

rotation distorts the molecule, opening out bond an?les and stretching
bonds slightly. The effect is to increase the moment of inertia of the
molecule and hence to decrease its rotational constant.



Centrifugal Distortion in diatomic molecules

When J increase (molecule rotates faster) the bond length increase —
the moment of inertia increase — the rotational constant B decrease.

B'=B - D-J(J+1)

The rotational energy becomes:

D: the centrifugal distortion constant (in cm) D=

V, . the wavenumber of harmonic oscillator!

E..(J)=hc-[J(0+1)-B-D-J*(J+1)°]

(cm™)

In this case, the wavenumber of rotational transition (J—>J+1) is:

v, :ﬁ—E:ZB(J+1)—4D(J+1)3
C - -
im cm® B D
HZCl 1044 0.0005282
The centrifugal distortion constant 2¢0 1923 0.0000061
D is much smaller than B! HCN 1478 0.0000029




The rotational energy levels of real molecule shrink together.

The peaks (rotational transitions) from rotational spectra of real
molecule are not equidistant!

V. =2B(J+1)-4D(J +1)’

Rigid Rotor J Centrifugal

30B 5> distortion
3 . .
£ 20B , viJ) =8
E Jr1)| T~ T4
z . ) \t)'\
= 12B 3 .

6B 2 , \2

2B | L \/+1)

vV,

= f(J+1)

(J+1)

B and D constants can be calculated from the graph function:

(J‘::l) =2B-4D(+1)f — slope = -4D; y intercept = 2B




E o (9)=hc- [0 +1)-B-D,J*(I+1)]

1 Rigid rovator MNon-rigid rotater
10
\H"-.,
.
S
9
"\l\-“-‘.
"H‘
g —
e ——
7 ——
[ —_——
5
4
3
1
|
0
0 18 4B 6B 38 0B 118 4R 168 8F 208
/ .r"/:""’/ il
-
T IF 4F 65 RE 108 118 14F g

Rigid

Non-nigid

The change in rotational energy levels and spectrum when passing from a rigid to a non-rigid diatomic

molecule, Energy levels on the right are calculaied using D = 10~ 8.

v =2B(J+1)-4D(J+1)°

oo Ueo
J
fi l -
i “""-.___
A
|
f
5 ---"--h..__ ]
)
|
I
4 '-—-'—l-_,._,___ 1
{.
|
I
i —
I
I
I
b ] [
1 1
]
o1 I
0 18 AF (.3 8 ] 126 em
I i | H I
| | I I I
I I I | i
1 | | i
8 48 6 RE Ing 128

The effect of sotopic substitution on
such as carbon monoxde,

the energy levels and rotatignal spectrum of a dial

m,m,
m, +m,



Independent activity

a) The molecule 23Na'H (rigid rotor) is found to undergo a rotational transition
from J = 0 to J = 1 when it absorbs a photon of frequency 2.94-10' Hz.

b) What is the equilibrium bond length of the molecule?

c) Calculate the wavenumber of the most intense rotational transition at room
temperature.

d) Calculate the difference (in cm1) between energy of the fifth rotational level of
NaH considering rigid rotor and non-rigid rotor (D = 0.0003 cm-1) approximations.

- h kT 1
- =2B(J+1)-4D(J +1)’ B= _ | k1
Y (+2)-4D3+1) 8n°C-uR Y =\ 2heB 2
E . (3)=hc-[3(J+1)-B-D,*(J+1)]

1u=1.67-102"kg k=1.38-1022J/K ¢=3-108m/s, h=6.626-1034J-s



Rotation of polyatomic molecules

The moment of inertia | of a system about an axis passing through
the center of mass is given by:
1=> m;r?
i

The polyatomic molecules can be classified on the basis of their
moments of inertia about three mutually perpendicular axes through the center of
mass (principal axes).

a, b, c: three axes

I, 1, Ic: three moments of inertia

(Iczlmax) "C>"b>"a

+  An asymmetric rotor
has three different
moments of inertia;
all three rotation
axes coincide at the
centre of mass of the
molecule.




General Classification of Molecules

l. Spherical tops: Lozl =,

Zero dipole moment
. ho rotational spectrum

Il. Symmetric tops:  (two identical /)

a) Prolate tops: ]a < ]b :[C

b) Oblate tops: ]a — ]b < ]C

ll. Asymmetrictops: |/, <[, </,




Rotational terms

For diatomics we defined a rotational constant E o

In general we require three such rotational constants:

as wavenumbers:

1 1
I uR?
i i: 5o i*.r G i?
8t°cl, 8t-cl, 8Tl
A > B = C

H,O molecule

A=279cm™
B=14.5cm®
C=9.3cm™

But, we can no longer relate

these constants explicitly to
individual bond lengths
within the molecule.



Prolate tops — —
F,=BJ(J+1)+(4—-B)K"

J=0.1.2.3. ..

Levels labelled JKa K=0.+t1.+2... tJ

Jis the total angular momentum
or rotational guantum number and
K the projection quantum number
(for projection on the unique, a axis).

—

J|=JJ(T+1)n| [J,=Kh

J

2

=12

£=0

E=+1 E=+2

n.b., Each level has 2J+1 degeneracy (arising from M)
In addition, each level K > 0 has extra two-fold degeneracy (£X)



Oblate tops

F, . =BJ(J+1)+(C - B)X?
J=0.1.2.3...
K=0.+1+2.. . .+J

Levels labelled JK-:

J is the total angular momentum
or rotational guantum number and
K_the projection quantum number
(for projection on the unique, c axis).

Oblate tops are typically flat F,
“discus” — like molecules (e.g., benzene)

n.b., Each level has 2J+1 degeneracy (arising from A{))
In addition, each level K > 0 has extra two-fold degeneracy (£K)



Don’t confuse various projections

J

= JJ(T+1)H

() K=0

K refers to a projection on
a body-fixed axis ic) :
(in this case, for a prolate top, the a axis)

M, refers to a projection on
a space-fixed axis



Energy levels for Symmetric tops

Prolate top terms

"~

F,x=BJ(J+1j+(4-B)K>)

N >()
&

Fotlbd

By

0
K=0 K=1 E=2

K - stacks

For a given J, energy increases with K

Oblate top terms

Frk ZEJF’J+];§_;E _B ,JKE,

3

-_—_— -1 2T
= ')
1 s

0 1

=) K:l K=2

K - stacks

For a given J, energy decreases with K



Linear Meolecules (C_, D,,)

Special, limiting case of prolate top:

]a — 0, hence A==

Only K = 0 exists, so

F;=BJ(J+1) J=0123,. .

Spherical Tops (T, O, I,)

F,=BJ(J+1) J=0,1.2,3,...

Degeneracy = (2J+1)2



Asymmetric tops

Alas for the vast majority of molecules there is no simple general analytical form for
the rotational levels. Some molecules are described as “near prolate” and “near
oblate” tops. In general, terms can be derived by matrix diagonalisation.

H,O
A=27.88 cont
i B=14.52 cm!
300 - (=9.28 cm 331 339
- i
E .
u =
e
= i 522 321
.E 260 |-
= X 312
- N
% | 3pz 313 221 228
g 188 |~ 211
i o@7 212
i 11 118
[ 181
oL 908

Ka



Rotational Spectroscopy

I. Gross Selection rule: To exhibit a pure rotational spectrum a molecule must
possess a permanent dipole moment.

Homonuclear diatomic molecules such as O,, H,, etc. do not have a
dipole moment and, hence, no pure rotational spectrum!

Il. Specific Selection Rule: During a transition the allowed changes in the J, K
quantum numbers are:

AJ =+1 AK =0

(arises from quantum theory, but you ca think of this as a combination of
conservation of angular momentum and parity)



‘Spectra of Symmetric tops

prolate

Terms: F; :EJ(J+1}+(.ﬂa‘g—J_r“j?E)Jr"{2

oblate

F;x =BJ(J+1)+(C-B)K’

Allowed ~
v=F —F
transitions: J+LK J.K

ie, v=2B(J+])

Within the rigid rotor approximation spectra of prolate & oblate tops are the same
as for linear molecules (and indeed spherical tops):
i.e., Equally spaced lines with separation = B

We thus obtain no information on the unique axis (a for prolate, ¢ for oblate) i.e.,
nothing about the other rotational constants.



Beyond the Rigid Rotor: Centrifugal Distortion

The rigid rotor model holds for, well, rigid rotors.

Molecules, unfortunately, are not rigid rotors — their bonds stretch during rotation.

= _::3 Centrifugal As a result, the various 7 (and thus
I force rotational constants) change with J.

It is more convenient (i.e., easier) to
treat centrifugal distortion as a
perturbation to the rigid rotor terms.



Centrifugal Distortion in symmetric tops

Prolate tops:

F(J,K)SBJ(J+1)+(A—B)K}-D,J*(J+1)> =D J(J+1)K? —DK*,

Oblate tops:
F(J,K)=BJ(J+1)+(C - E;Kzr—ﬁ_,ﬁw +1)*>-DJ(J+1)K* -D.K*,
T\ /

Rigid rotor terms Centrifugal distortion terms

i.e., three distortion constants!

AJ=+1 AK =0

F(J+LK)-F(J.K)
2B-DgK?)(J+1)—4D,(J+1)?

Transitions occur at; |V

J=1-2 J=2 3
I no centrifugal distortion I
Effect on . —
Spectrum: S e e
I I with centrifugal distortion [ I I
- K=1K=0 . . K=2 . K=1 K=0

cm 3.4070 3.4072 3.4074 3.407e  5.1102 5.1104 5.1106 51108



Roto-vibrational IR spectroscopy

In the IR absorption spectra recorded at high resolution, the vibrational
bands have a structure of lines due to rotational transitions (J; — J,) that occur
simultaneously with the vibrational transition (v, — Vv.,).

At room temperature - only the vibrational ground state (v = 0) is populated.

- the rotational levels with J > O are populated: the rotational
level with maximum population have a rotational quantum number different from
zero (J.,., # 0)!

max

E..=E,, +E, IR radiation : 300 —4.000 cm!

tot vibr

E.. =h-c-VO(v+%j+h-C-B-J(J+1)+...

~1.000cm™ ~1-10cm™
v=012.... J=012....

If the molecule (in vibrational ground state) absorbed infrared radiation, it
will pass on an excited vibrational level (Av = +1).

In the same time, the molecule can pass on another rotational level of
excited vibration level (characterized by a different rotational quantum
number than the initial) (AJ = + 1)



Electronic Vibrational Rotational

A == mmmmmmmmmmmsmnmaman- :
The spectrum consists of lines
i i that appear at the frequency
i J=3 | corresponding to transitions,
= j=2 i having the intensity proportional to
> v=1 i . the number of molecules that have
ol S, =0 | v=1 J=0 i -
- ; ] made that transition.
Z : i
W a i
] =3 |
— =§ i = |
— /= ol ——— 1
s, A W ==5 LM
o= v=0 | v=0 ==———y—=J=0 | 1] Hnanny
hvo ™ e 20CB Vo v

Pure vibrational spectrum: one line at v,
Pure rotational spectrum: several lines separated by 2B.
Roto-vibrational spectrum : several lines separated by 2B, grouped into two branches
(P and R), apart in v, zone
(exception: for polyatomic molecule Q branch (v,) could appear!)



Roto-vibrational spectra of diatomic molecules

Consider the molecule as an harmonic oscillator and a rigid rotor.

The selection rules for roto-vibrational transition are: Av=+1 Al ==11

The energy absorbed by molecule is equal with the sum of vibrational and
rotational energy changes.

E...=AE, +AE,, E(v,J)=h-c: [ﬁo(v+ %j +B-J(J+1)]

h-c-o=E,-E, =E(v,,J,)—E(v,,J;) — absorbed energy

p=f2TE {BO(VZ +%j+ B-J,(J, +1)}{ﬁo(vl+%)+ B-J,(J, +1)}

h-c
At room temperature: v,=0and Av=+1 so v,=1

V= 50 +B- [JZ(JZ -|-1)- ‘]1(‘]1 -|-1)] <« wavenumber of roto-vibrational transition

The rotational levels with J # 0 are populated, thus transitions with AJ =1 and AJ =-1
may occur.

AJ=+1—J,=J+1 |Ug =V,+2- B-(Jl+1) Rbranch (J;,=0,1,2,..)

A=-1 = J,=3-1  |p,=9,-2-B-J, Pbranch (3,=1,2,3,..)




20B
A

12B

6B

2B
0B y'=1

20B

12B

J=2 E ! . : 68
J=1 - L1 o8
J=0 : E I 1 i 1 1 1 ® v=0
IZBIZBIZB(_YI_;ZB ZBIZBI
&
.|||H H ““ll.
P-branch Q R-branch

Selection rules: AJ =0, %1
Av =1

If AJ = +1 we obtained R branch (“rich”,
the molecule gain rotational energy)

If AJ = -1 we obtained P branch (“poor”,
the molecule lose rotational energy)

If AJ = O we obtained Q branch (for
perpendicular vibrations in polyatomic
molecules: ex. NCN bend)

The lines of the P-branch (purple
arrows) and R-branch (red arrows) are
separated by 2B, thus the bond length
can be deduced!



Vs =0, +2:B-(J+1)

=4
J=0,1, 2,
J,=3
J,=2
J=1
1E0
R branch
Vo=V, +2-B
J,=3 12B Vp1 =0y +4-B
- 68  — _
737 28 Vg,=V0,+6-B
Ji=0 E, =0 |
P,4 0 B2 18 [2BQ2BJ2B
-6B -4B -2B i +2B +4B +6B +8B ... V

Vo
Q branch (AJ = 0) could appear in IR spectrum of polyatomic molecule!

Q tranzition (AJ = 0) is allowed only for vibrations that involved a perpendicular
dipole moment change (to the symmetry axis of the molecule).

Q branch (AJ = 0): Vg =y



For real molecule: vibration and rotation are not independent!

‘ H‘Hhm .
Vy

‘\r.l'

Two effects appear: |
1

1) roto-vibrational coupling

Diatomic molecule: molecule vibrates — the bonds length (r) are changing — the
moment of inertia changes — the rotational constant B changes

B,=B.—aq, (v+1) a, — roto-vibrational coupling constant
2 B, — rotational constant for rigid and independent rotor

Each vibrational level have different rotational constant, so B, # B,!

In this case the energy of roto-vibrational level is:

E(v,J)=h-c-[v, v+% +B, -J(J+1)]

E(v,J)=h-c[v, v+% +B, -J(J+1)—ae(v+%)J(J+1)]




2) centrifugal distorsion

When the rotation velocity increase (J increase) — the bond lenght increase — the
moment of inertia increase — the rotational constant B decrease

B, =B, - D-J(J +1) D — centrifugal distorsion constant

In this case the energy of roto-vibrational level is:

E(v,J)=h-c-[v,| v+= |+B,-JJ+1]]

E(v,J)=h-c-[v, v+% +B,-J(J+1)-DI*(J+1)]

Considering both effects, the energy of a particular roto-vibrational level is:

E,,=h -C{Go(v+%j+ B.J-(J +1)—oce(v+%}] (J+1)-D[3(J +1)]2}




E,,=h -0{50(v+%j+ B.J-(J +1)—ae(v+%JJ-(J +1)-D[I( +1)]2}
We can consider: E,; =helv,(v+1/2)+B, 30 +1)]

where: B,, =B, —a(v+%) —-DJ(J+1)

Pbranch: (Av=1, AJ=-1) (v=0andJ=1,2,3..)

_ 1 _
Vo = he (E(l,J—l) - E(O,J)) =V, +(B, - Bo)J2 — (B, +By)J
Qbranch: (Av=1,AJ=0)(v=0siJ=1,2,3..) (if observable)

_ 1 _
Voi = h_C (E(v+1,J) - E(V,J)) =Vot+ (Bl - Bo)J(J "‘1)

R branch: (Av=1, AJ=+1) (v=0s1J=0,1,2,3..)

_ 1 _
VRi = he (E(1,3+1) - E(O,J)) =V, +(B; —B,){J +1)° + (B, +B,)(J+1)
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Part of the rotational-vibrational spectrum of
methane (CH,) gas (from FTIR), showing the
presence of P-, Q- and R- branches (purple,

top)

A simulation ot the rotational-vibrational
spectrum of methane (CH,) . Frequency is on
the x-axis, and transmittance on the y-axis
(black, down).
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Roto-vibrational coupling effect is higher than centrifugal distorsion!

Because of anharmonicity, the bond length is higher in v = 1 state thaninv =0
state (r; > r,), S0 B; <B,  (with 1-2%).

In R branch the distances between lines decrease (when J increase).

In P branch the distances between lines increase (when J increase).

1
P. —
* Py Hy Bv_Be_ae(V+E)
, ; o, — roto-vibrational coupling constant
1 1
8 B. — rotational constant for rigid and
E independent rotor
t
1
TN
] | :
L L I i I|hf B,=B.-~a
" _Jll '._ y I W, I'.,_JI \ W \ _,a' - _,;'l Ig_,'l -H.II LY IU I.k J '.,_,ul l.‘_ III‘- Jill\._,.'\_ e 2 e
2700 2800 2900 3000 3100
frequency / cm-? A, = Bo — Bl

gray - calculated spectrum (supposed B, = B,)
black - experimental spectrum (real molecule!)



E,, =hc[,(v+1/2)+BJ(J+1)]

P branch: AJ=-1

Rigid rotor: B, = B, = B,

E=15=0) = Eq=04=1) = he[vy + Be(0) - B(2)] = he[v, - 2 B] = hCYPl
E=15=1) - Eq=0=) = he[vy + Be(2) - Bo(6)] = he[v - 4 B ] = hCVP_z
E=15=0) - Eq=o=3) =hc[vy + Be(6) - B.(12)] = he[v, - 6 B.] = hevps

R branch: AJ=+1

E(v=1,1=1) - E(V=0,J=0) =hc[vy + Bo(2) - Bo(0)] = hc[v, +2 B,] = hC_VRO
E(V=1,J=2) - E(vzo,le) = hc[vy + B(6) - B((2)] = hc[v, +4B,] = hC\Q?l
E(=1.023) = Eq=o3=) = he[vg + B.(12) - B.(6)] = he[v, + 6B.] = hcvg,

E,, =hc[v,(v+1/2)+BJ(J+1)]

P branch: AJ=-1

Non-rigid rotor: B, # B,

(Bo>By)

Ew-13-0) - E=00-1) = hC[E +B1(0) - By(2)] = hc[l_o - 2By] =hevpq B
Ew-13-1) - E=032) = hC[\Q +By(2) - By(6)] = hC[Vo_Jr 2B, - 6By] = hC\’Pz_
E =152 - Eq=03=3) = hc[vy + By(6) - By(12)] = hc[v, + 6 B, - 12By] = hcvps

R branch: AJ=+1

Eq=11=1) = Eq=01=0) = hC[E +B41(2) - Bo(0)] = hC[E +2B;] = hcvpgg B
Eq=11=0) = E=01=1) = hc[ﬁ +B4(6) - Bo(2)] = hC[Vo_ +6B, - 2B(] = hcle
E=11=3) - Eq=0=2) = he[vy + B(12) - By(6)] = he[vy +12B, - 6B(] = hevg,




The lab analysis of roto-vibrational spectra

Difference combination method is based on the determination of
difference between wavenumbers of two transitions with a common energy level
(initial or final)

Same |n|t|al level VRJ _VPJ _ 81(4\] n 2) . VRJ _VPJ
I=r+1 1= 4] 2)
J=J- 3 ( +
B,=B.——«
B, rotation constant of superior vibrational level (B')

Same (J’) final level VR(J—l) _VP(J+1) — Bo (4J + 2) Bo _ Vr(-1) 7 Ve
1 (43+2)
J —
+ 1 BO - Be — L&
P R B, rotation constant of inferior vibrational level (B")
"=+ _ 3B,-B
et o, =B, - B, B, =—%—




Only the gaseous molecules have rotational fine structure!

In lichid state the molecular rotations are partially blocked by molecular interactions —
the rotational fine structure disappears or appears like an envelope of P, Q, R structure.

If the solvents are increasing polarity, we will obtain
different spectra

-unpolar solvents (FC 75 (C4F,;0) and Freon 113)
— envelope of rotational bands

-polar solvents (dichlorhmetane: CH,CI.,)
— the rotational bands disapper complete.

The H-CIl bond force constant decrease from unpolar
solvents to polar solvents. Therefore, the maximum of
principal band shift to lower frecquencies.

F
? | R FR Fr
C—C—Cl  C—C—Cl F O F
| I
F F F FF FF FF
Freon-11 Freon-12 F F

ABSORBTIE

Ihh.. -

) FC 75

Freon 113

2600 2800 2000 v/cm!

Rotational fine structure (HCI - gas)

Pure vibrational band (HCI in CH,CI, - liquid)



Lower resolution roto-vibrational spectrum — the rotational structure do not appeatr!

Still rotational constant B could be calculated

with formula:
Av=50 cm-1 B 8kT B
Av = 1/
hc

Av = the distance between the 2 maxima
(the envelopes of R and P branch).

Absorbtie

, , , Ex: For T=300K andAv=50cm
200 e @0 20 rotational constantis B = 1,51 cmt

cm-1

Independent activity:

Calculate the distance (in wavenumbers) between the transitions (AJ = £1)
that start from the most populated rotational level of lower vibrational level (the
two maxima from the figure). Consider the molecule as an harmonic oscillator

and a rigid rotor:

_ 1 kT 1
Ev,))=h-c-|v,| v+— [+B-J{J+1 J == _=
e e IS B NEN AO



Usually superior level (v,, J,) is not populated, so the roto-vibrational transitions
intensity depends on the lower level population (v, J,) .

AN = N(V1’J1)_ N(Vz"]z)z N(Vl"]l)

%
/ \ _
N(Vl,J1)= Nog(Jl)exp —ﬂ ! AT termal population |
k-T Nh|1 p
he (_ 1
N(vy,J;) = N0(2J1+1)9Xp_ﬁ v, (V, +§)+ B-J,(J;+1)
| )
0 5 10 15 20

Rotational quantum number J;

e x'i.'.i#.[ ;IH . | | '| ‘u HLL i Ujhn B,
Vi

Relative amplitude of roto-vibrational lines is related mainly to the population of rotational
levels.
At room temperature:

- vibrational states 0 and 1:
N,/Ny = (1/1) exp[-10-18J/(1.38-10%3J/K - 300K)] =0 (all the population is in the lower state)

- rotational states O and 1:
N,/Ny = (3/1) exp[-10-21J/(1.38-10%3J/K - 300K)] = 2.4 (two and a half larger population at state J = 1 than at state J = 0)



Determination of temperature through spectroscopy:

There are two types of temperature: one that can be measured through
thermal equilibrium of the medium with a thermometer or a thermocouple, and one

that is determined through spectroscopy.

To a first approximation, the height of the peaks in the roto-vibrational
spectrum depends on the population of the state where the absorption/emission
line is originated.

For rotational lines, the population is proportional to:

- E —h-c-B
N, = Nog(J)exp( ” TJ): N,(2J +1)exp( ~ e J(J +1)j

—h-c-B
eI+
T ( )j

N, =N,(2J +1)exp(

(2J +1) comes from the degeneracy of rotational states and E; = B, J(J+1)



The rotational quantum number (J,,,,) corresponding to maximum intensity line
can be calculated by taking the first derivative of the expression with respect to J

and setting it to O.

N, =N, (2 +1)exp( hkCTBe 3%+ J)j

dN, h-c-B, , ., h-c-B —h-c-B, , .,
= 2N, exp| TSR (324 3) |+ Np(23 + 1)~k (20 +1) |exp| T (37 4+
o =2hpen “H B eny (2 1 B @a oo B0 0)

N, 5 - 2+(2J+1)(M(2J 1))
dJ T
2KT —hcB, - (432 +2J +1) =0
1 [ KT
S
27\ 2hcB,

4hcB,J? +2hcB,J + (hcB, —2kT) =0

kT 1
2hcB,

Since J > 0; Jooy =

N |




We can calculate which line will be the largest for a given temperature, or if
we know which is the strongest line, we can calculate the temperature.

For the example of HCI absorption, the largest lines were the 4t of the R
branch, and the 3" of the P branch.

R branch, AJ = +1 0—-1
152
2—3
34 originated in 3rd state

P branch, AJ = -1 1-0
2—1
32 originated in 3rd state

1 [k, T \/1.38x10‘23T
Then: 3+ — = = T =355K
2\ 2B, 2% 2x107%




Problems:

1. a) From the following wavenumbers of the P and R branches of the 0—1 infrared
vibrational band of *H!?7l, obtain the values for the rotational constants B,, B, and B,
(in cm?), the band center v, (in cm) and the vibration-rotation interaction constant
a, (in cm).

Transition Frequency (cm) Transition Frequency (cm)
R(0) 2242 P(1) 2217
R(1) 2254 P(2) 2204
R(2) 2265.5 P(3) 2190.5
R(3) 2276.5 P(4) 2176.5

b) What value results for the internuclear distance r, (in A)?
How does the value for r, compare with the value r,=1.607775 A for 2H*?7| ?
How should it compare? Why?

c) What fraction of the HI molecules are in the v = 0; 1; 2 states at 300 K and at
1500 K?



2. Which of the following set of molecules, O,, HF, CCl,, H,O and CO, would exhibit
a microwave spectrum ?

A molecule requires a permanent dipole moment to exhibit a microwave spectrum. Thus HF, H,O
and CO would have such a spectrum, whilst O, and CCl, would not.

Will CO and O, give rotational fine structure in an infra-red spectrum ?

To give a line in an infra-red spectrum, the molecule must exhibit a change in dipole moment
during a vibration.
To get rotational fine structure the molecule must also have a permanent dipole moment.

Thus the vibrational lines in the IR spectrum of CO will have rotational fine structure, but O, will
not give an IR spectrum at all.

3. The rotational constant for the ground vibrational state (v = 0) for 2C16Q is
1,9314 cm* In a microwave spectrum of 12C160, what will be the spacing between
absorption lines? (used the rigid rotor approximation)

For the rigid rotor approximation, microwave absorption lines appear at 2B, 4B, 6B etc. giving the
line separation = 2B.
Therefore, the absorption lines would be separated by 2 - 1,9314 = 3,8628 cm™.



4. The rotational constant for the ground vibrational state (v = 0) for 12C16Q, denoted
B,, is 1,9314 cm. Using the rigid rotor approximation, calculate the equilibrium
internuclear distance.

For the rigid rotor approximation, the energy of a rotational level J is given by
EJ) = h-c:B J(J+1)

and the wavenumber of an absorption line as
Vi =AE/h-c = [E(J+1) - EQ))/h-c = 2 B (J+1)

h
where the rotational constant B:—8n2 1c cm® (cisin units of cm-s1),

N [ h
and the moment of inertia, | = p r2. Thus, = |—
8z cuB

For 12C160, 11 = [12-16/(12+16)] - 1,6606-1027 = 1,1385026 kg

In its ground vibrational state (v=0), the rotational constant is given as B = B, = 1,9314 cm™,
thus,

. 6,6262-107
*\8-77-2,9979-10"-1,1385-107 -1,9314 r, =0,11283-10° m = 0,1128 nm



5. For the first vibrationally excited state (v = 1) of 12C160, the rotational constant, denoted
B,, is 1,6116 cm. Again using the rigid rotor approximation, calculate the equilibrium bond
distance for this state.

Similar to question (4), except that in the first vibrational state (v=1), the rotational constant B = B, =
1,6116 cm®. Thus,

. 6,6262-10™" r, = 0,12352-10° m = 0,1235 nm
*~\8-72.2,0979-10°-1,1385.107° -1,6116

6. How will manifest the change in the equilibrium internuclear distance (hence the change
In rotational constant) in the rotational fine structure of the infra-red spectrum ?

When the molecule is in its lowest vibrational state (v=0), it has an equilibrium bond length of 0,1128 nm
corresponding to a rotational constant, B, = 1,9314 cmt. When vibrationally excited to its first vibrational
state (v = 1), it has an increased equilibrium bond length of 0,1235 nm, and a lower rotational constant,

B, =1,6116 cmL. This will be the observed in the rotational fine structure of the fundamental vibrational
peak Vo =AG (v=0-1) of the IR spectrum.

Since B, > B;, we would observe lines getting wider spaced in the P-branch and closer in the R-branch, as

depicted in the spectrum below.
P-branch R-branch

AN

cmt



http://rkt.chem.ox.ac.uk/tutorials/rotation/rot_spectra.html
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